C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name : Linear Algebra

Subject Code : 5SC0	1LIA1	Branch: M.Sc(Mathematics)		
Semester : 1	Date : 20/03/2017	Time : 10:30 To 01:30	Marks : 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions

- a. Define: Idempotent linear transformation
- **b.** Determine the dimension and basis for the following subspace of \mathbb{R}^3 : The plane 3x-2y+5z=0
- **c.** Determine whether the given vectors u = (-4, 6, -10, 1) and v = (2, 1, -2, 9) are orthogonal with respect to the Euclidean inner product.
- **d.** Find the coordinate vector of $p = 2 x + x^2$ relative to the basis $S = \{p_1, p_2, p_3\}$ where $p_1 = 1 + x$, $p_2 = 1 + x^2$, $p_3 = x + x^2$
- **e.** Check whether the set of vectors of the form (a, 2, 0) is a subspace of \mathbb{R}^3 or not.
- **f.** Find d(u,v) if u = (-1,2), v = (2, 5) and weighted Euclidean inner product is

 $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ where $u = (u_1, u_2)$ and $v = (v_1, v_2)$.

g. Determine algebraic multiplicity of each eigen value of the matrix $\begin{bmatrix} 4 & 5 & 0 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{bmatrix}$.

Q-2 Attempt all questions

- **a.** Find eigen value and eigen vectors for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $T(x, y, z) = (-2y - 2z, -2x - 3y - 2z, 3x + 6y + 5z); \forall (x, y, z) \in \mathbb{R}^3$ by considering the standard basis of \mathbb{R}^3 .
- **b.** Let *n* be any positive integer. Consider the set $V = R^n$ of all vectors of the form (5) $u = (u_1, u_2, \dots, u_n)$ together with standard vector addition

 $u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$ and scalar multiplication

$$cu = (cu_1, cu_2, \dots, cu_n)$$
 where $u, v \in \mathbb{R}^n$; $u_1, u_2, \dots, u_n \in \mathbb{R}$;

(14)

(5)

(07)

 $v_1, v_2, \dots, v_n \in \mathbb{R}$, $c \in \mathbb{R}$. Show that V is a vector space.

c.	Express the polynomial $p = -9 - 7x - 15x^2$ as a linear combination of	(4)
	$p_1 = 2 + x + 4x^2$, $p_2 = 1 - x + 3x^2$ and $p_3 = 3 + 2x + 5x^2$	

		OR		
Q-2		Attempt all questions	(14)	
	a.	State and prove Riesz Representation Theorem.	(5)	
	b.	Show that if V is a finite dimensional vector space then any two basis of V have	(5)	
		the same number of elements.		
	c.	^{c.} Find $N(T)$, $n(T)$, $R(T)$, $r(T)$ for the following linear transformation T .		
		$T: \mathbb{R}^2 \to \mathbb{R}^3; \ T(x, y) = (x, x+y, y); \ \forall (x, y) \in \mathbb{R}^2$		
Q-3		Attempt all questions	(14)	
	a.	Let R^3 have the Euclidean inner product. Use the Gram-Schmidt process to	(5)	
		transform the basis vectors $u_1 = (1,0,0)$, $u_2 = (3,7,-2)$, $u_3 = (0,4,1)$ into an		
		orthonormal basis.		
	b.	State and prove Rank-Nullity theorem.	(5)	
	c.	Check whether the set of vectors $(1, 1, 2, 1)$, $(1, 0, 0, 2)$, $(4, 6, 8, 6)$ and	(4)	
		(0, 3, 2, 1) are linearly dependent or not.		
0.3		UR Attempt all questions	(14)	
Q-3		$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$	(14)	
		Check what has the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ is disconsilizable on path	(0)	
	a.	Check whether the matrix 0 2 1 is diagonalizable or not.		
		$\begin{bmatrix} -1 & 2 & 2 \end{bmatrix}$		
	b.	If $T: U \to V$ and $S: V \to W$ be any non-singular linear transformation, then	(5)	
		prove that $(S \circ T): U \to W$ is also non-singular and $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$.		
	c.	State and prove Cayley – Hamilton theorem.	(4)	
		SECTION – II		
Q-4		Attempt the Following questions (1 Mark *7=7)	(07)	
	a.	Show that if A is invertible then for all B, $det(ABA^{-1}) = det B$.		
		$\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$		
	b.	Find the minimal polynomial for the matrix $A = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$		
		$\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}_{7 \times 7}$		
	c.	What is Index of nilpotence of $T \in A(V)$?		
	d.	Define: Orthogonal matrix		
	e.	Give an example of Skew Hermitian matrix.		
	ť.	Express the following quadratic forms in matrix notation.		
		$x_1^{-} + 2x_2^{-} + 3x_3^{-} + x_4^{-} - 2x_1x_2 + 4x_1x_3 - 2x_1x_4 + 4x_2x_3 - 6x_2x_4 - 8x_3x_4$		
	g.	Write down the quadratic form corresponding to the following matrix.		

[0	1	2	3]
1	2	3	4
2	3	4	5
3	4	5	6

0.5		Attempt all questions	(14)
Q-5		Attempt an questions Show that for $A B \subseteq F$ det $(AB) = (det A)(det B)$	(14)
	а. 1	Show that for $A, B \in \Gamma_n$, $\det(AB) = (\det A)(\det B)$.	(5)
	b.	Define Jordan Canonical form. Determine all possible Jordan canonical forms for	(5)
		a linear operator $T: V \to V$ whose characteristic polynomial is $\Delta(t) = (t-7)^{+}$.	
	c.	Show that interchanging two rows of A changes the sign of its determinant.	(4)
		OR	
Q-5		Attempt all questions	(14)
	a.	Reduce the quadratic form $Q = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$ to	(5)
		canonical form by congruent transformation.	
	b.	Show that if V is a n dimensional over F and if $T \in A(V)$ has all its characteristic	(5)
		roots in F, then T satisfies a polynomial of degree n over F .	
	c.	Describe the conic whose equation is $9x^2 + 4y^2 - 36x - 24y + 36 = 0$ Give it's	(4)
		equation in the translated coordinate system	
		equation in the translated coordinate system.	
Q-6		Attempt all questions	(14)
c	a.	Prove that two nilpotent linear transformations are similar if and only if they have	(5)
		the same invariants.	
	b.	If $A = (a_{ij})$ and $B = (b_{ij})$ are $n \times n$ matrices then prove that	(5)
		(i) The trace is a linear operator.	
		(ii) The trace is a commutative operator.	
		(iii) $Tr(A^T) = Tr(A)$	
	c.	The Characteristic and minimal polynomials of an operator T are respectively,	(4)
		$\Lambda(t) = (t-5)^4 (t-6)^3$ and $m(t) = (t-5)^2 (t-6)^2$. Find all possible Jordan	
		$= (1)^{-1} (1 + $	
		OR	
O-6		Attempt all Ouestions	(14)
•	a.	If $T \in A(V)$ has all its characteristic roots in F, then prove that there is a basis of	(5)
		V in which the matrix of T is triangular	
	h	Provide the conjective equation is $9r^2 + 6ry + y^2 = 4 - 0$. Give it's equation in	(5)
		Describe the content whose equation is $y_x + 0xy + y = 4 - 0$. Once it is equation in the network exercises	

the rotated coordinate system.c. Show that the characteristic roots of a Hermitian matrix are all real. (4)

